
Unit 3 

:Basic Definition and Terminology, Set-theoretic operations, Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy 

Relations, Membership Functions, Fuzzy Rules & Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert 

Systems, Fuzzy Decision Making; Neuro fuzzy modeling- Adaptive Neuro-Fuzzy Inference Systems, 

Coactive Neuro-Fuzzy Modeling, Classification and Regression Trees, Data Clustering Algorithms, Rule 

base Structure Identification. 
 

LECTURE-1 

Fuzzy Sets Basic Concepts 

• Characteristic Function (Membership Function) 

• Notation 

• Semantics and Interpretations 

• Related crisp sets 

• Support, Bandwidth, Core, α-level cut 

• Features, Properties, and More Definitions 

• Convexity, Normality 

• Cardinality, Measure of Fuzziness 

• MF parametric formulation 

• Fuzzy Set-theoretic Operations 

• Intersection, Union, Complementation 
• T-norms and T-conorms 
• Numerical Examples 
• Fuzzy Rules and Fuzzy Reasoning 
• Extension Principle and Fuzzy Relations 

• Fuzzy If-Then Rules 

• Fuzzy Reasoning 

• Fuzzy Inference Systems 

• Mamdani Fuzzy Models 

• Sugeno Fuzzy Models 

• Tsukamoto Fuzzy Models 

• Input Space Partitioning 

• Fuzzy Modeling. 

 
The father of fuzzy logic is Lotfi Zadeh who is still there, proposed in 1965. Fuzzy logic can 

manipulate those kinds of data which are imprecise. 
 

Basic definitions & terminology: 

Fuzzy Number: 

A fuzzy number is fuzzy subset of the universe of a numerical number that satisfies condition 
of normality & convexity.It is the basic type of fuzzy set. 

 

why fuzzy is used? Why we will be learning about fuzzy? The word fuzzy means that, in 

general sense when we talk about the real world, our expression of the real world, the way we 

quantify the real world, the way we describe the real world, are not very precise. 
 

When I ask what your height is, nobody would say or nobody would expect you to know a 

precise answer. If I ask a precise question, probably, you will give me your height as 5 feet 8 

inches. But normally, when I see people, I would say this person is tall according to my own 

estimate, my own belief and my own experience; or if I ask, what the temperature is today, the 

normal answer people would give is, today it is very hot or hot or cool. Our expression about 

the world around us is always not precise. Not to be precise is exactly what is fuzzy. 
 



Fuzzy logic is logic which is not very precise. Since we deal with our world with this imprecise 

way, naturally, the computation that involves the logic of impreciseness is much 

more powerful than the computation that is being carried through a precise manner, or rather 

precision logic based computation is inferior; not always, but in many applications, they are 

very inferior in terms of technological application in our day to day benefits, the normal way. 
 

Fuzzy logic has become very popular; in particular, the Japanese sold the fuzzy logic controller, 

fuzzy logic chips in all kinds of house hold appliances in early 90‟s. Whether it is washing 

machine or the automated ticket machine, anything that you have, the usual house hold 

appliances, the Japanese actually made use of the fuzzy logic and hence its popularity grew. 
 
 

 
Fig. Difference in Fuzzy and crisp boundary 

 

As fuzzy means from precision to imprecision. Here, when I say 10, I have an arrow at 10, 

pointing that I am exactly meaning 10 means 10.00000 very precise. When I say they are all 

almost 10, I do not mean only 10, rather in the peripheral 10. I can tolerate a band from minus 

9 to 9, whereas if I go towards 9 or 11, I am going away from 10, the notion of 10. That is what 

is almost 10, that is around 10, but in a small bandwidth, I still allow certain bandwidth for 10. 
 

This concept to be imprecise is fuzzy or to deal with the day to day data that we collect or we 

encounter and representing them in an imprecise manner like here almost 0, near 0, or hot, cold, 

or tall; if I am referring to height, tall, short medium. This kind of terminology that we normally 

talk or exchange among ourselves in our communication actually deals with imprecise data 

rather than precise data. Naturally, since our communications are imprecise, the computation 

resulting out of such communication language, the language which is imprecise must be 

associated with some logic. 



 

 

 

Fig. Sets: classical & fuzzy boundary 
 

Set: A collection of objects having one or more common characteristics. For example, set of 
natural number, set of real numbers, members, or elements. Objects belonging to a set is 
represented as x belonging to A, where A is a set. 

Universe of Discourse: 

Defined as “a collection of objects all having the same characteristics”. 

Notation: U or X, and elements in the universe of discourse are: u or x 
 

Now, we will be talking about fuzzy sets. When I talked about classical set, we had classical 

set of the numbers that we know, like we talked about the set of natural numbers, set of real 

numbers. What is the difference between a fuzzy set and a classical set or a crisp set? The 

difference is that the members, they belong to a set A or a specific set A or B or X or Y, 

whatever it is, we define them; but the degree of belonging to the set is imprecise. If I say, a 

universal set in natural numbers, all the natural numbers fall in this set. If I take a subset of this 

natural number, like in earlier case, we put 1 to 11 in one set. When I ask, whether 12 belongs 

to set A, the answer is no; 13 belongs to set A? The answer is no; because, in my natural number 

set, only 1 to 11 are placed. This is called classical set and their belongingness here is one. 

They all belong to this set. 
 

But in a fuzzy set, I can have all the numbers in this set, but with a membership grade associated 
with it. When I say membership grade is 0 that means, they do not belong to the set, whereas a 
membership grade between 0 to 1, says how much this particular object may belong to the set. 

The nomenclature/ Notation of a fuzzy set - how do we represent a fuzzy set there? One way 

is that let the elements of X be x1, x2, up to xn; then the fuzzy set A is denoted by any of the 

following nomenclature. 
Mainly 2 types: 

1. Numeric 

2. Functional 

Mostly, we 

will be using either this or the first one, where you see the ordered pair x 
1 µ A x1; x1 is member of A and x1 is associated with a fuzzy index and so forth, x2 and its 

fuzzy index, xn and its fuzzy membership. The same thing, I can also write x1 upon µ A x1. 



That means x1 is the member and this is the membership. The other way is here, in the third 

pattern the membership is put first and in the bottom the member x1 with a membership, x2 

with membership and xn with membership. 

Every member x of a fuzzy set A is assigned a fuzzy index. This is the membership grade µA 

x in the interval of 0 to 1, which is often called as the grade of membership of x in A. In a 

classical set, this membership grade is either 0 or 1; it either belongs to set A or does not belong. 

But in a fuzzy set this answer is not precise, answer is, it is possible. It is belonging to set A 

with a fuzzy membership 0.9 and I say it belongs to A with a fuzzy membership 0.1; that is, 

when I say 0.9, more likely it belongs to set A. When I say 0.1, less likely it belongs to set A. 

Fuzzy sets are a set of ordered pairs given by A. The ordered pair is x, where x is a member of 

the set. Along with that, what is its membership grade and how likely the subject belongs to set 

A? That is the level we put, where x is a universal set and µx is the grade of membership of the 

object x in A. As we said, this membership µ. 

A x lies between 0 to 1; so, more towards 1, we say more likely it belongs to A. Like if I say 

membership grade is 1, certainly it belongs to A. 

 
For an example: a set of all tall people. Tall if I define, classically I would say above 6 is tall 
and below 6 is not tall; that is, 5.9, 5 feet 9 inches is not tall and 6.1, 6 feet 1 inch is tall. That 
looks very weird; it does not look nice to say that a person who is 6 feet 1 inch is tall and 5 feet 
9 inches is not tall. This ambiguity that we have in terms of defining such a thing in classical 
set, the difficulty that we face can be easily resolved in fuzzy set. In fuzzy set, we can easily 
say both 6.1, 6 feet 1 inch as well as 5.9 inches as tall, but level this difference; they are tall, 
but with a membership grade associated with this. This is what fuzzy set is. 

Membership function - a membership function µ A x is characterized by µ A that maps all 

the members in set x to a number between 0 to 1, where x is a real number describing an object 

or its attribute, X is the universe of discourse and A is a subset of X. 
 
 

Fig. Fuzzy Sets with Discrete Universes 

Fuzzy set A = “sensible number of children” 

X = {0, 1, 2, 3, 4, 5, 6} (discrete universe) 

A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}--(See discrete ordered pairs)(1st 

expression) 



or 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. Fuzzy Set with Cont. Universe 

Fuzzy set B = “about 50 years old” 

X = Set of positive real numbers (continuous) 

B = {(x, µB(x)) | x in X} 

µB(x)=f(x) 

 
(2nd expression –with function that is subjective) 

3rd expression of fuzzy set: 
 

 

 

Linguistic variable and linguistic values: 

Linguistic variable is a variable expressed in linguistic terms e.g. “Age” that assumes various 

linguistic values like :middleaged, young, old. The linguistic variables are characterized by 

membership functions. 



 

 

Fig. A membership function showing support, bandwidth, core, crossover points 

Support: 

Support of a fuzzy set A is the set of all points x in X such that µA(x)>0. 

Support (A)= {x| µA(x)>0} 

Core: 

The core of a fuzzy set A is the set of all poits x in X such that µA(x)=1 

core (A)= {x| µA(x)=1} 

Normality: 

A fuzzy set A is normal if its core is nonempty. Always there is at least one x with µA(x)=1 
then it is normal. 

Crossover point: 

A cross over point in fuzzy set A is the x with µA(x)=0.5 

crossover (A)= {x| µA(x)=0.5} 

Bandwidth: 

For a normal & convex fuzzy set 

Width(A)=|x2-x1|, where x2 & x1 are crossover points. 

fuzzy singleton: 

A fuzzy set whose support is a single point in X with µA(x)=1 is called a fuzzy singleton. 



 
 

For the set given in figure we can find equivalence & write 

 

Convexity: 
 

 

 

Symmetry: 

A fuzzy set is symmetric if its MF is symmetric about a certain point x=c such that, 

µA(c+x)= µA(c-x) for all x in X 

Comparison of the classical approach and fuzzy approach: 

Let us say, consider a universal set T which stands for temperature. Temperature I can say cold, 

normal and hot. Naturally, these are subsets of the universal set T; the cold temperature, normal 

temperature and hot temperature they are all subsets of T. 

The classical approach, probably, one way to define the classical set is cold. I define cold: 

temperature T; temperature is a member of cold set which belongs to the universal set T such 

that this temperature, the member temperature is between 5 degree and 15 degree centigrade. 

Similarly, the member temperature belongs to normal, if it is between 15 degree centigrade 

and 25 degree centigrade. Similarly, the member temperature belongs to hot set when the 



temperature is between 25 degree centigrade and 35 degree centigrade. As I said earlier, one 

should notice that 14.9 degree centigrade is cold according to this definition while 15.1 degree 

centigrade is normal implying the classical sets have rigid boundaries and because of this 

rigidity, the expression of the world or the expression of data becomes very difficult. For me, 

I feel or any one of us will feel very uneasy to say that 14.9 degrees centigrade is cold and 

15.1 degree centigrade is normal or for that matter, 24.9 degrees centigrade is normal and 25 

degree or 25.1 degree centigrade is hot. That is a little weird or that is bizarre to have such an 

approach to categorize things into various sets. 

In a fuzzy set, it is very easy to represent them here. If the temperature is around 10 degree 

centigrade, it is cold; temperature is around 20 degrees centigrade, it is normal and when 

temperature is around 30 degree centigrade it is hot. In that sense, they do not have a rigid 

boundary. If you say here, 25 degree centigrade, the 25 degree centigrade can be called 

simultaneously hot as well as normal, with a fuzzy membership grade 0.5. 25 degrees 

centigrade belongs to both normal as well as hot, but when I say 28 degree centigrade, this is 

more likely a temperature in the category of hot, whereas the 22 degree centigrade is a 

temperature that is more likely belonging to the set normal. This is a much nicer way to 

represent a set. This is how the imprecise data can be categorized in a much nicer way using 

fuzzy logic. This is the contrasting feature, why the fuzzy logic was introduced in the first 

place. 

Fuzzy sets have soft boundaries. I can say cold from almost 0 degree centigrade to 20 degree 

centigrade. If 10 degree has a membership grade 1 and as I move away from 10 degree in both 

directions, I lose the membership grade. The membership grade reduces from 1 to 0 here, and 

in this direction also from 1 to 0. The temperature, As I go, my membership grade reduces; I 

enter into a different set simultaneously and that is normal. You can easily see, like temperature 

12, 13, 14, 15 all belong to both categories cold as well as normal, but each member is 

associated with a membership grade; this is very important. 

In a classical set, there are members in a set. Here, there are members in a set associated with 

a fuzzy index or membership function. 
 

LECTURE-3 

 

Parameterization of Membership Function: 

Once we talk about each member in a fuzzy set associated with membership function, you must 
know how to characterize this membership function. The parameters are adjusted to fine tune a 
fuzzy inference system to achieve desired I/O mapping. The membership functions given here 
are one- dimensional. 2 dimensional MFs can be formed by cylindrical extension from these 
basic MFs. 

 

 

 

Where a<b<c & that are x coordinates of the corners of triangular MF 



 

 

Where a<b<c<d & that are x coordinates of the corners of trapezoidal MF 
 

Where c is the centre & a is adjusted to vary the width of MF, b controls slope at crossover 

points. 

Bell membership function is also termed as Cauchy MF. 

Where c is the centre & Ϭ is the width of MF. 
 

Left-Right MF: 
 

 

 

 

 

 
Sigmoidal MF: 

 

 

 
 



It can be open left or open right depending on sign of a. 
 

 
 

 

 
Fig. Membership functions a. Triangle b. Trapezoidal c. Gaussian d. Bell, e. Left f. Right 



LECTURE-4 

Fuzzy set operations: 

The main features of operation on fuzzy set are that unlike conventional sets, operations on 
fuzzy sets are usually described with reference to membership function. When I say operation, 
I do not do with the member itself, but I manipulate. When I say operation, I manipulate the 
membership of the members in a set; members are not manipulated, rather the membership 
function of the member is manipulated. This is very important; that is, x and µ( x). In classical 
set what is manipulated is x. 

 

If I say, x is 1 In classical set when I say x is 1 then, I would say 1 minus x is 0. In this, the 

manipulation concerns with the member; whereas any kind of manipulation in fuzzy set does 

not involve with x; rather it involves µx. 
 

Containment or subset: 
 

 

 

Three common operations: intersection which we say is the minimum function, union, which 

we say is the maximum function and then fuzzy complementation 
 

Standard fuzzy operations: 

Intersection(Conjunction)or T-norm: 

We can easily see that, the membership of A (green) intersection B(red) in fig. is all the 

members that belongs to, that is common between A and B. Their membership will follow 

these (blue) curves. There are two things we are doing. We have 2 sets. One is set A and the 

other is set B. Classically, what we see is the common members between A and B. We are 

not only seeing the common members, here we are also seeing, what is their membership 

function. 

 

Fig. Fuzzy set operations intersection & union 

The membership function is computed minimum; that is, µA intersection B is minimum of 

µA x and µ B x. That is the membership function. When there is a common member between 

A and B, the membership function wherever is minimum that is retained and the other one is 

thrown away. The member is retained; what is changing is the membership function. 



Union(Disjunction) or T-co-norm or S-norm: 

That is the meaning of these two curves that we have and then we are trying to find out what 
the fuzzy union is. I have to find out In this the members are both belonging to A and B. But 
their membership is maximum of both. if I have common members. I have set A and I have set 
B; A union B is my union set. If x belongs to A and x belongs to B, then x also belongs to 
A union B. But in fuzzy set, here this is µ x and here it is µ x and in this case, this is 
maximum of µ 

A 
x and µ 

B 
x; the membership fuAnction. That is the way it is assigned. 

 

 
 

This candidate, when it comes to A union B take these two values of membership, find the 
maximum which is 0.1 and assign here, which is 0.1. This is, µ union is 0.1. This is the 

meaning. This is a very important operation that we do. When we have Btwo different fuzzy 
sets, the operations are classical. The manipulation is among the membership functions; 
otherwise, the notion of the classical fuzzy operation also remains intact, except that the 
associated fuzzy membership gets changed. 

 

Complement(Negation): 
 

now it is fuzzy complementation. What is complement? This one, this particular triangular 

function is my set R(red); fuzzy set R. The complement is like this; just inverse (blue). What 
is 1 minus µ x; meaning 1 minus µ x. 

A A 

 

 

 

Fig. Complement of fuzzy set 
 

What is seen that the members remain intact in the set A, whereas the associated membership 

functions got changed. 
 

The other operations that we know for classical sets like De Morgan‟s law, the difference also 
can be used for the sets like De Morgan‟s law. 

Properties/ identities of fuzzy sets: 

They are commutative. A union B is B union A; A intersection B is B intersection A. It is like 

classical sets; fuzzy sets equally hold. 
 

Associativity; A union B union C is A union B union C. Similarly, A union bracket B union 

C is A intersection B intersection C is A intersection B combined with intersection C. 



Distributivity: you can easily see that A union B intersection C is A union B intersection A 

union C which is here. Similarly, here A intersection B union A intersection C. So, this is 

distributivity. 
 

Idempotency which is A union A is A and A intersection A is A. 
 

Identity: A union null set is A, A intersection universal set is A, A intersection null set is null 

and A union universal set is universal set X; here, X represents universal set. 
 

The next step in establishing a complete system of fuzzy logic is to define the operations of 

EMPTY, EQUAL, COMPLEMENT (NOT), CONTAINMENT, UNION (OR), and 

INTERSECTION (AND). Before we can do this rigorously, we must state some formal 

definitions: 

Definition 1: Let X be some set of objects, with elements noted as x. Thus, 

X = {x}. 

Definition 2: A fuzzy set A in X is characterized by a membership function 

mA(x) which maps each point in X onto the real interval [0.0, 1.0]. As 

mA(x) approaches 1.0, the "grade of membership" of x in A increases. 

Definition 3: A is EMPTY iff for all x, µA(x) = 0.0. 

Definition 4: A = B iff for all x: µA(x) = µB(x) [or, µA = µB]. 

Definition 5: µA' = 1 - µA. 

Definition 6: A is CONTAINED in B iff µA <= µB. 

Definition 7: C = A UNION B, where: µC(x) = MAX(µA(x), µB(x)). 

Definition 8: C = A INTERSECTION B where: µC(x) = MIN(µA(x), µB(x)). 

Difference probability & fuzzy operations: 

It is important to note the last two operations, UNION (OR) and INTERSECTION (AND), 

which represent the clearest point of departure from a probabilistic theory for sets to fuzzy sets. 

Operationally, the differences are as follows: 

For independent events, the probabilistic operation for AND is multiplication, which (it can 

be argued) is counterintuitive for fuzzy systems. For example, let us presume that x = Bob, S 

is the fuzzy set of smart people, and T is the fuzzy set of tall people. Then, if µS(x) = 0.90 

and µT(x) = 0.90, the probabilistic result would be: 

µS(x) * µT(x) = 0.81 

whereas the fuzzy result would be: 

MIN(µS(x), µT(x)) = 0.90 

The probabilistic calculation yields a result that is lower than either of the two initial values, 

which when viewed as "the chance of knowing" makes good sense. However, in fuzzy terms 

the two membership functions would read something like "Bob is very smart" and "Bob is very 

tall." If we presume for the sake of argument that "very" is a stronger term than "quite," and 

that we would correlate "quite" with the value 0.81, then the semantic difference becomes 

obvious. The probabilistic calculation would yield the statement If Bob is very smart, and Bob 

is very tall, then Bob is a quite tall, smart person. The fuzzy calculation, however, would yield 

If Bob is very smart, and Bob is very tall, then Bob is a very tall, smart person. 

Another problem arises as we incorporate more factors into our equations (such as the fuzzy 

set of heavy people, etc.). We find that the ultimate result of a series of AND's approaches 0.0, 

even if all factors are initially high. Fuzzy theorists argue that this is wrong: that five factors of 

the value 0.90 (let us say, "very") AND'ed together, should yield a value of 0.90 (again, "very"), 

not 0.59 (perhaps equivalent to "somewhat"). 



Similarly, the probabilistic version of A OR B is (A+B - A*B), which approaches 1.0 as 

additional factors are considered. Fuzzy theorists argue that a sting of low membership grades 

should not produce a high membership grade instead, the limit of the resulting membership 

grade should be the strongest membership value in the collection. 

The skeptical observer will note that the assignment of values to linguistic meanings (such as 

0.90 to "very") and vice versa, is a most imprecise operation. Fuzzy systems, it should be noted, 

lay no claim to establishing a formal procedure for assignments at this level; in fact, the only 

argument for a particular assignment is its intuitive strength. What fuzzy logic does propose is 

to establish a formal method of operating on these values, once the primitives have been 

established. 

Hedges : 

Another important feature of fuzzy systems is the ability to define "hedges," or modifier of 

fuzzy values. These operations are provided in an effort to maintain close ties to natural 

language, and to allow for the generation of fuzzy statements through mathematical 

calculations. As such, the initial definition of hedges and operations upon them will be quite a 

subjective process and may vary from one project to another. Nonetheless, the system 

ultimately derived operates with the same formality as classic logic. The simplest example is 

in which one transforms the statement "Jane is old" to "Jane is very old." The hedge "very" is 

usually defined as follows: 

µ"very"A(x) = µA(x)^2 

Thus, if mOLD(Jane) = 0.8, then mVERYOLD(Jane) = 0.64. 

Other common hedges are "more or less" [typically SQRT(µA(x))], "somewhat," "rather," "sort 

of," and so on. Again, their definition is entirely subjective, but their operation is consistent: 

they serve to transform membership/truth values in a systematic manner according to standard 

mathematical functions. 
 

 

Cartesian Product & Co-product: 

Let A & B be fuzzy sets in X & Y respectively, then Cartesian product of A & B is a fuzzy 
set in the product space XxY with the membership function 

 

Similarly, Cartesian co-product A+B is a fuzzy set 
 

Both Product & Co-product are characterized by 2- dimensional MFs. 

LECTURE-5 

Fuzzy Extension Principle: 

Consider a function y = f (x). 

If we known x it is possible to determine y. 

Is it possible to extend this mapping when the input, x, is a fuzzy value. 



The extension principle developed by Zadeh (1975) and later by Yager (1986) establishes 

how to extend the domain of a function on a fuzzy sets. 

 
Suppose that f is a function from X to Y and A is a fuzzy set on X defined as 

A = μA(x1)/x1 + μA(x2)/x2 + . . . + μA(xn)/xn. 

The extension principle states that the image of fuzzy set A under the mapping f (.) can be 

expressed as a fuzzy set B defined as 

B = f (A) = μA(x1)/y1 + μA(x2)/y2 + . . . + μA(xn)/yn 

where yi = f (xi ) 

If f (.) is a many-to-one mapping, then, for instance, there may exist x1, x2 ∈ X, x1 6= x2, such 

that f (x1) = f (x2) = y_, y_ ∈ Y . The membership degree at y = y∗ is the maximum of the 

membership degrees at x1 and x2 more generally, we have μB(y_) = maxy=f (xi ) μA(x) 

 
A point to point mapping from a set A to B through a function is possible. If it is many to one 

for two x in A then the membership function value in set B is calculated for f(x) as max 
value of MF. 

 
 

Fuzzy Relation: 

CRISP MAPPINGS: 
 
 

 
Fig. Mapping a relation 

Consider the Universe X = {−2,−1, 0, 1, 2} 

Consider the set A = {0, 1} 

Using the Zadeh notation A = { 0/ −2 + 0/−1 + 1/ 0 + 1/ 1 + 0/ 2} 

Consider the mapping y = |4x| + 2 

What is the resulting set B on the Universe Y = {2, 6, 10} 



It is possible to achieve the results using a relation that express the 

mapping y = |4x| + 2. 

Lets X = {−2,−1, 0, 1, 2}. 

Lets Y = {0, 1, 2, . . . , 9, 10} 

The relation 
 

B = A ◦ R 
 

 
 

Fuzzy Mappings: 
 

 

 

 

 

 
Fig. Fuzzy arguments mapping 

Consider two universes of discourse X and Y and a function y = f (x). 

Suppose that elements in universe X form a fuzzy set A. 

What is the image (defined as B) of A on Y under the mapping f ? 

Similarly to the crisp definition, B is obtained as 

 
Fuzzy vector is a convenient shorthand for calculations that use matrix relations. 

Fuzzy vector is a vector containing only the fuzzy membership values. 

Consider the fuzzy set: 

The fuzzy set B may be represented by the fuzzy vector b: 



 
 

Now, we will be talking about fuzzy relation. If x and y are two universal sets, the fuzzy sets, 

the fuzzy relation R x y is given. As this is all ordered pair, µR x y up on x y for all x y, 

belonging to the Cartesian space x, you associate µ R x y with each ordered pair. 

What is the difference between fuzzy and crisp relation? In fuzzy this is missing, where µ R x 

y is a number in 0 and 1. µR x y is a number between 0 and 1. This is the difference between 

crisp relation and fuzzy relation. In crisp relation, it was either 0 or 1. It is either completely 

connected or not connected, but in case of fuzzy, connection is a degree; that is, it is from 0 to 

1. 

The example is, let x equal to 1 2 3. Then x has three members, y has two members 1 and 2. 

If the membership function associated with each ordered pair is given by this e to the power 

minus x minus y whole squared. I is seen that this is the kind of membership function that is 

used to know, how close is the members of y are from members of x. Because, if I relate from 

1 to 1 using this, then you can see 1 minus 1 is 0 that is 1 and 1 very close to each other; 

whereas, 2 and 1 is little far and 3 1 one is further far. This is a kind of relationship we are 

looking between these two sets. 

Let us derive fuzzy relation. If this is the membership function, fuzzy relation is of course all 

the ordered pairs. We have to find out 111 2 2 1 2 2 3 1 and 3 2. These are all the sets of ordered 

pairs and associated membership functions. You just compute e to the power minus x minus y 

whole square. Here, 1 1 1 minus 1 whole square, 1 2 1 minus 2 whole square, 2 1 2 

minus 1 whole square, 2 two 2 minus 2 whole square, 3 1 3 minus 1 whole square, 3 2 3 

minus 2 whole square and if you compute them, you find 1 0.4 3 0.4 3 1 0.1 6 0.4 3. This is 

your membership function. This is one way to find relation. 

Normally, I know, it is easier to express the relation in terms of a matrix instead of this 

continuum fashion, where each ordered pair is associated with membership function. It is easier 

to appreciate the relation by simply representing them in terms of matrix. How do we do that? 

This is my x 1 2 3 y is 1 21 the membership function associated was 1 1 2 

membership is 0.4 3 2 1 0.4 3 2 2 1 3 1 0.1 6 and 3 2 is 0.4 3 that you can easily verify here 1 

3 0.4 3 0.1 6 and 1. 

The membership function describes the closeness between set x and y. It is obvious that higher 

value implies stronger relations. What is the stronger relation? It is between 1 and 1, and they 

are very close to each other, and 2 and 2; they are very close to each other. Closeness between 

2 and 

2, between 1 and 1 is actually 1 and 1. They are very close to each other; similarly, 2 and 2. If 

I simply say numerical closeness, then 2 and 2 are the closest, and 1 and 1 are the closest. That 

is how these are the closest. Higher value implies stronger relations. 

 

This is a formal definition of fuzzy relation; it is a fuzzy set defined in the Cartesian product 

of crisp sets; crisp sets x1 x2 until xn. A fuzzy relation R is defined as µR upon x1 to xn, where 

x1 to xn belongs to the Cartesian product space of x1 until xn; whereas, this µR the fuzzy 

membership associated is a number between 0 and 1. 



LECTURE-6 
 

 

Fig. Inferring Fuzzy relation 

 

Max-min composition or Max-min product: 

It is a sort of matrix multiplication but memberships are not multiplied. 

We will now explain, max min composition operation using an example that makes things 

much more clear. This is my matrix, relational matrix R1 relating x and y and R2 relating y and 

z. I have to find out the relational matrix from x to z using fuzzy rule of composition. We 

normally write R3 is R1 composition R2. Using max min composition, how do we compute 

R3? 



 

Fig. Example Max-min composition or Max-min product 



I want to now build a relationship between R1 & R2. Membership associated with x1 is 0.1 

and z1 is 0.9. Let me put it very precise, x1 x2 x3 z1 and z2; if you look at what we will be 

doing here, This is my x1 row and this is my z1 column. What I do, x1 row and z1 column; I 

put them parallel and find out what is minimum. Here, minimum is 0.1 and here minimum is 

0.2. After that, I find out what is the maximum, which is 0.2. This is what maximum of 

minimum 0.1. 0.9 is minimum 0.2. 0.7 is 0.2. This is how we found out. The easiest way if I 

want to find out is this one; this x1 x2 and z1. x2 means this row which is 0.4 and 0.5 and x2 

and z1. z1 is again 0.9 and 0.7. I will find out. Minimum here is 0.4, minimum here is 0.5 and 

maximum here is 0.5. You get this 0.5.Similarly, we can compute all the elements in R3 using 

a max min composition operation. As usual, any max min composition can follow certain 

properties, associative and distributive over union. That is P fuzzy composition Q union R is P 

composition Q union P composition R. 

 
Fig. Properties of max-min composition 

 

Similarly, weekly distributed over union is P composition, Q intersection, R is a subset of P 

composition. Q union P composition R monotonic Q is a subset of R implies that, P 

composition Q is a subset of P composition R. 

 

Max-product composition: 

Now, again, the same example we have taken R 

1, R2 and R3. Now, I want to find out from R1 and R2, what R3 using max product composition 

is. 



 

Fig. Example Max-product composition 

 

Let us say, this is x1 x2 x3 z1 z2 z1 z2 and this is x1 x2 x3 for x1. I take this row which is 0.1 

0.2 and finding the relation the fuzzy membership associate x1 and z1. I take the column from 

z1 which is 0.9 0.7 and I multiply them here 0.1 0.9 is point 0 9 0.2 0.7 is 0.1 4 and find out 

what is the maximum. This is the maximum 0.1 4. 

I take another example. Let us find out the relationship between x2 and z2; for x2 the row is 

 0.5 and z2 the column is 0.8 0.6. Corresponding to this, if I multiply I get 0.4 0.8 is 0.3 2 

0.6 is 0.3. Maximum is 0.3 2. This is 0.4 3 0.3 2. This is where it is 0.1. The answer is here, the 

R3 and if I go back, if I look, R3 here is different. 
 

Fig. Projection of fuzzy relation 

Projection of fuzzy relation: 

A fuzzy relation R is usually defined in the Cartesian space x and x and y. Often a projection 

of this relation on any of the sets x or y, may become useful for further information processing. 



The projection of R x y on x denoted by R 1 is given by µ R 1 x is maximum. So, y belongs 

to y µR x y. The meaning is that if I have R, this is x1 and x2 and this is y1 and y2, and this is 

0.1 0.4 and this is 0.5 0.6. If these are the membership functions associated with x1 y1 x2 y2 is 

0.4 x2 y1 is 0.5 x2 y2 is 0.6.projection, which means for x projection, I find out what the 

maximum is. Overall, y in this case maximum is 0.4 and for x2 the max maximum projection 

is if I took it here, 0.6. Similarly, if I make projection of R, x, y over x, what is the maximum? 

This is 0.5 and this is 0.6. This is called x projection and y projection of a relation matrix R. 

 

Fig. Example of projection 

We repeat another example. We have x as 3 components 1 2 3, y has 2 components 1 and 2. 

This is the previous example that we had 1 0.4 3 0.4 3 1 0.1 6 0.4 3. x projection would be 1 

3 maximum 1 0.4 3 1 maximum 1 0.1 6 0.4 3 maximum 0.4 3. Above figure illustrates 

x and y projection of fuzzy relation. For x projection, the maximum value in each row 

is retained. What is the maximum value in each row? Here, x projection maximum 

value in each row is retained, while the maximum value in each column is retained for 

y projection. 

 

Fig. Definition of projection 

This is our formal definition of a fuzzy relation, projection of a fuzzy relation R on to any of 

its set in the Cartesian product space; that is in the Cartesian product space. This is our Cartesian 

product space and for that, we can map this one to any of these i or j or k; whatever 



it is, for any value, then is defined as a fuzzy relation Rp, where Rp is defined as maximum 

over Xi until Xk, where this is our Xi Xj Xk and this is µRp. 

First, we talked about fuzzy relation projection of fuzzy relation. Once we have projection of 

fuzzy relation, we can extend the projection to again infer what should be the relation. This 

kind of technique may be useful in coding the information, where we have a huge number of 

information and we want to transfer such a kind of projection and from projection to extension 

would be beneficial for coding operation. 

 
The crisp relation and fuzzy relation: 

the difference is that in crisp relation; the index is either 0 or 1 that is, either complete relation 

or no relation. But in fuzzy the membership grade is either 0 or 1; Whereas, in fuzzy the relation 

has a grade from 0 to 1. Fuzzy composition rule; max min composition max product 

composition unlike in crisp relation, where both max min and max product gives you the same 

answer; whereas in fuzzy composition, max min and max product will give two different 

answers . 
 

LECTURE-7 

 

Fuzzy If-then rules: 

 

If x is A then y is B 

“x is A” is antecedent or premise which tells the fact 

“y is B” is consequence or conclusion 

The whole statement is the rule. 

Eg. If tomato is red then it is ripe. 

These if then rules are the base of fuzzy reasoning. 

If then rules are of different types: 

1. Single rule with single antecedent 

2. Single rule with multiple antecedent 

3. Multiple with multiple antecedent 

Steps of Fuzzy reasoning: 

Shown in fig. For 2 rules what will be the consequent MF after aggregation 

1. Degree of compatibility 

2. Firing strength 

3. Qualified consequent MF 

4. Aggregate all qualified consequent MFs to obtain an overall MF 



 
Fig. Fuzzy reasoning, deriving output 

 

FUZZY MODELLING: 

Fuzzy Inferencing 

The process of fuzzy reasoning is incorporated into what is called a Fuzzy Inferencing System. 

It is comprised of three steps that process the system inputs to the appropriate system outputs. 

These steps are 1) Fuzzification, 2) Rule Evaluation, and 3) Defuzzification. The system is 

illustrated in the following figure. 

Each step of fuzzy inferencing is described in the following sections. 

Fuzzification 

Fuzzification is the first step in the fuzzy inferencing process. This involves a domain 

transformation where crisp inputs are transformed into fuzzy inputs. Crisp inputs are exact 

inputs measured by sensors and passed into the control system for processing, such as 

temperature, pressure, rpm's, etc.. Each crisp input that is to be processed by the FIU has its 

own group of membership functions or sets to which they are transformed. This group of 

membership functions exists within a universe of discourse that holds all relevant values that 

the crisp input can possess. The following shows the structure of membership functions within 

a universe of discourse for a crisp input. 



where: 

degree of membership: degree to which a crisp value is compatible to a membership 

function, value from 0 to 1, also known as truth value or fuzzy input. 

membership function, MF: defines a fuzzy set by mapping crisp values from its domain to 

the sets associated degree of membership. 
 

Fig. Fuzzy inferencing system 

 

crisp inputs: distinct or exact inputs to a certain system variable, usually measured parameters 

external from the control system, e.g. 6 Volts. 

label: descriptive name used to identify a membership function. 

scope: or domain, the width of the membership function, the range of concepts, usually 

numbers, over which a membership function is mapped. 

universe of discourse: range of all possible values, or concepts, applicable to a system 

variable. 

When designing the number of membership functions for an input variable, labels must initially 

be determined for the membership functions. The number of labels correspond to the number 

of regions that the universe should be divided, such that each label describes a region of 

behavior. A scope must be assigned to each membership function that numerically identifies 

the range of input values that correspond to a label. 

The shape of the membership function should be representative of the variable. However this 

shape is also restricted by the computing resources available. Complicated shapes require more 

complex descriptive equations or large lookup tables. The next figure shows examples of 

possible shapes for membership functions. 



When considering the number of membership functions to exist within the universe of 

discourse, one must consider that: 

i) too few membership functions for a given application will cause the response of the system 

to be too slow and fail to provide sufficient output control in time to recover from a small input 

change. This may also cause oscillation in the system. 

ii) too many membership functions may cause rapid firing of different rule consequents for 

small changes in input, resulting in large output changes, which may cause instability in the 

system. 

These membership functions should also be overlapped. No overlap reduces a system based on 

Boolean logic. Every input point on the universe of discourse should belong to the scope of 

at least one but no more than two membership functions. No two membership functions should 

have the same point of maximum truth, (1). When two membership functions overlap, the sum 

of truths or grades for any point within the overlap should be less than or equal to 1. Overlap 

should not cross the point of maximal truth of either membership function. 

The fuzzification process maps each crisp input on the universe of discourse, and its 

intersection with each membership function is transposed onto the μ axis as illustrated in the 

previous figure. These μ values are the degrees of truth for each crisp input and are associated 

with each label as fuzzy inputs. These fuzzy inputs are then passed on to the next step, Rule 

Evaluation. 

Fuzzy If then Rules : 

We briefly comment on so-called fuzzy IF-THEN rules introduced by Zadeh. They may be 

understood as partial imprecise knowledge on some crisp function and have (in the simplest 

case) the form IF x is A THEN y is B . They should not be immediately understood as 
i i 

implications; think of a table relating values of a (dependent) variable y to values of an 

(independent variable) x: 

A , B may be crisp (concrete numbers) or fuzzy (small, medium, …) It may be understood in 
i i 

two, in general non-equivalent ways: (1) as a listing of n possibilities, called Mamdani's 

formula: 
 

 
 

(where x is A
1 

and y is B
1 
or x is A

2 
and y is B

2 
or …). (2) as a conjunction of implications: 

 



 

 

Rule Evaluation 

Rule evaluation consists of a series of IF-Zadeh Operator-THEN rules. A decision structure 

to determine the rules require familiarity with the system and its desired operation. This 

knowledge often requires the assistance of interviewing operators and experts. For this thesis 

this involved getting information on tremor from medical practitioners in the field of 

rehabilitation medicine. 

There is a strict syntax to these rules. This syntax is structured as: 

IF antecedent 1 ZADEH OPERATOR antecedent 2 ............ THEN consequent 1 ZADEH 

OPERATOR consequent 2.............. 

The antecedent consists of: input variable IS label, and is equal to its associated fuzzy input 

or truth value μ(x). 

The consequent consists of: output variable IS label, its value depends on the Zadeh Operator 

which determines the type of inferencing used. There are three Zadeh Operators, AND, OR, 

and NOT. The label of the consequent is associated with its output membership function. The 

Zadeh Operator is limited to operating on two membership functions, as discussed in the 

fuzzification process. Zadeh Operators are similar to Boolean Operators such that: 
AND represents the intersection or minimum between the two sets, expressed as: 

 

OR represents the union or maximum between the two sets, expressed as: 
 

NOT represents the opposite of the set, expressed as: 
 

The process for determining the result or rule strength of the rule may be done by taking the 
minimum fuzzy input of antecedent 1 AND antecedent 2, min. inferencing. This minimum 
result is equal to the consequent rule strength. If there are any consequents that are the same 
then the maximum rule strength between similar consequents is taken, referred to as maximum 
or max. inferencing, hence min./max. inferencing. This infers that the rule that is most true is 
taken. These rule strength values are referred to as fuzzy outputs. 

Defuzzification 

Defuzzification involves the process of transposing the fuzzy outputs to crisp outputs. There 

are a variety of methods to achieve this, however this discussion is limited to the process used 

in this thesis design. 



A method of averaging is utilized here, and is known as the Center of Gravity method or COG, 

it is a method of calculating centroids of sets. The output membership functions to which the 

fuzzy outputs are transposed are restricted to being singletons. This is so to limit the degree of 

calculation intensity in the microcontroller. The fuzzy outputs are transposed to their 

membership functions similarly as in fuzzification. With COG the singleton values of outputs 

are calculated using a weighted average, illustrated in the next figure. The crisp output is the 

result and is passed out of the fuzzy inferencing system for processing elsewhere. 
 

Fuzzy Rule base and Approximate Reasoning an example: 

What is fuzzy linguistic variable? Algebraic variables take numbers as values, while linguistic 
variables take words or sentences as values. 

For example, let x be a linguistic variable with a label „temperature‟. The universe of discourse 
is temperature. In that universe, I am looking at a fuzzy variable x when I describe the 
temperature. The fuzzy set temperature denoted as T can be written as T = very cold, cold, 
normal, hot or very hot. 

For each linguistic value, we get a specific membership function. 

These are necessary because in the traditional sense, when we express worldly knowledge, we 
express them in natural language. So here it is. From computational perspective, such worldly 
knowledge can be expressed in terms of rule base systems. 

Rule based systems: 
 

Fig. Basics of rule based system 

The above form is commonly referred to as the IF-THEN rule-based form. It typically 
expresses an inference such that if we know a fact, we can infer or derive another fact. Given 
a rule, I can derive another rule or given a rule, if I know a rule and the associated relation, then 
given another rule, I can predict what should be the consequence. 



 

Fig.Fuzzy rules 

This is a fuzzy rule base. Any worldly knowledge can be expressed in form in the form of a 
rule base. Now, when I talk about fuzzy rule base, fuzzy information can be represented in the 
form of a rule base, which consists of a set of rules in conventional antecedent and consequent 
form such as if x is A, then y is B, where A and B represent fuzzy propositions (sets). Suppose 
we introduce a new antecedent say A dash and we consider the following rule if x is A dash, 
then y is B dash, from the information derived from rule 1, is it possible to derive the 
consequent in rule 2, which is B dash? 

The consequent B dash in rule 2 can be found from composition operation B dash equal to A 
dash. This is called the compositional rule of inference, the compositional operator with R. 

 

Fuzzy implication Relation: 
 

A fuzzy implication relation is another category, which will call Zadeh implication. This is if 

p implies q may imply either p and q are true or p is false. What we are saying is that just like 

a local Mamdani rule, we say p and q are true imply either p and q are true or p is false. Thus, 

p implies q means…. p and q are simultaneously true, which is Mamdani local rule or if p is 

false, then p implies q has no meaning or p is false. This has taken an extra logic that is p and 

q or not p. 

Thus, the relational matrix can be computed as follows. If I look at this, what is p and q? p 
and q means minimum of mu x and mu y. What is not p? 1 minus µ x. This entire thing 

has to be maximum of minimAum of theseB and this, which is this statemAent.µ, the relational 
matrix elements are computed using this particular expression. Given a set of rules, we just 
learnt various schemes by which we can construct a relational matrix between the antecedent 
and the consequent. The next step would be to utilize this relational matrix for inference. This 
method is commonly known as compositional rule of inference, that is, associated with each 
rule we have a relational matrix. So, given a rule means given a relational matrix and given 
another antecedent, we compute a consequent. 



 

Fig. Compositional rules 

This is derived using fuzzy compositional rules. The following are the different rules for fuzzy 
composition operation, that is, B equal to A composition R. R is the relational matrix associated 
with a specific rule, A is a new antecedent that is known, R is known, B is the new consequent 
for the new antecedent A. I have to find out what is B for this new A, given R. That is computed 
by A composition R and we have already discussed in the relation class that there are various 
methods and max-min is very popular. 

First, we compute min and then max. Similarly, max-product: instead of min, we take the 
product and compute what is the maximum value. Similarly, min-max: instead of max-min, it 
is min-max. First, max and then min. Next, max-max and min-min. One can employ these 
looking at the behavior of a specific data. 

 

Fig. Example of Compositional rules 

 

 
Now, we will take an example. 

We are given a rule if x is A, then y is B, where A is this fuzzy set: 0.2 for 1, 0.5 for 2, and 

0.7 for 3. This is a discrete fuzzy set. B is another fuzzy set that defines fuzzy membership 



0.6 for 5, 0.8 for 7, and 0.4 for 9. The question is infer B dash for another rule if x is A dash, 

then y is B dash, where A dash is known. A is known, B is known, and A dash is known. What 

we have to find out is what B dash is. Infer B dash is the question that is being asked Using 

Mamdani implication relation, first we will find out between A… the first rule, that is, if x = 

A, then y is B. The relational matrix associated with this rule is…. For R, how do we compute? 

A elements are 1, 2, and 3 and B elements are 5, 7, and 9. We have to find out now for 0.2. 

Here, we compare with all the elements in point B and with each element, we found what the 

minimum is. The minimum is always 0.2. Hence, the maximum of that is always 

0.2. I have to find out the relational matrix between A and B. 

The Mamdani principle means minimum, so between 1 and 5, 1 is associated with 0.2, and 5 

is associated with 0.6, so the minimum is 0.2. Similarly, 1 is associated with 0.2, 7 is associated 

with 0.8, so for 1 and 7, the minimum is 0.2. Similarly, 1 is associated with 0.2, 9 is associated 

with 0.4, so from 1 to 9, the minimum membership is 0.2. Similarly, you can see that from 2 to 

all the elements 5, 7, 9, the minimum are 0.5, 0.5, and 0.4. Similarly, from 3 to 

5, 7, and 9, we have 0.6, 0.7, and 0.4. These are the minimum fuzzy memberships between an 

element in A to element in B. That is how we compute the relational matrix. 

Once we compute the relational matrix, then we use max-min composition relation to find out 

what is B dash, which is A dash (which is 0.5, 0.9, and 0.3) composition R and you can 

compute. This is my R. I have to find out my matrix. This is 0.5, 0.9, and 0.3. So this 

composition R   is… you can easily see I take this row vector, put along the column matrix and 

I see what is the minimum for each case. You can easily see 0.2 will be minimum here, 

 will be minimum here, 0.3 and maximum is 0.5. 

The first element is 0.5. Again, I take this place in parallel with this column and then, I find 

first minimum here is 0.2, here 0.5, here 0.3 and then maximum is again 0.5. Again, I take the 

same row vector, put along this column vector and then, I find here the minimum is 0.2, here 

minimum is 0.4, here minimum is 0.3 and the maximum is 0.4. This is the relation, this is the 

answer. This is our B dash. Given A, this is my B dash using fuzzy compositional principle or 

relation. 

 

Fig. Comparison of compositional rules 

 

There are other mechanisms also that we discussed. For the same example, if you use max- 

min, you get B dash; for max-product, you get another B dash; for min-max, you get another. 

Min-max and max are same for this example. Then, for max-max, you see that all the fuzzy 

membership are the maximum values and for min-min, they are the minimum values here. 



Approximate reasoning: 

means given any logical system, we do not have, it is very difficult to make an exact result. 

That is why from engineering perspective, we are more liberal. We do not want to be so precise. 

As long as our system works, we are happy; if our control system works, we are happy. 

 

Fig. Approximate reasoning 

 

Approximate reasoning. We have set up rules so we use a specific compositional rule of 

inference and then we infer the knowledge or the consequence. Given a rule R (R is the 

relational matrix associated with a specific rule) and given a condition A, the inferencing B is 

done using compositional rule of inference B equal to A composition R. The fuzzy sets 

associated with each rule base may be discrete or continuous, that is, A may be discrete or A 

and B may be discrete or continuous. 

A rule base may contain a single rule or multiple rules. If it is continuous, I cannot define what 

the R relational matrix is. It is very difficult because it will have infinite values. R is not defined. 

That is why for continuous, we apply compositional rule of inference but the method to compute 

is different. A rule base may contain single rule or multiple rules. Various inference 

mechanisms for a single rule are enumerated. Various mechanism means we talked about min-

max, max-min, max-max, min-min and so on. The inference mechanism for multiple rules. 

Single rule: 

Now, we will take the examples one by one. Single rule with discrete fuzzy set. We talked 

about a fuzzy set that may consist of a single rule or multiple rules. It can be discrete fuzzy set 

or a continuous fuzzy set. We will try to understand how to make approximate reasoning for 

such a rule base using the methods that we just enumerated. For each rule, we compute what is 

the relational matrix if it is discrete fuzzy set and then we use compositional rule of inference 

to compute the consequence given an antecedent. That is for discrete fuzzy set. We have already 

talked about this but again, for your understanding, I am presenting another example for single 

rule with discrete fuzzy set. 



 

Fig. Single rule 

 

Rule 1: If temperature is hot, then the fan should run fast. If temperature is moderately hot, 

then the fan should run moderately fast. In this example, we are given the temperature is in 

degree Fahrenheit and the speed is expressed as 1000 rpm. The fuzzy set for hot H is for 70 

degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100 degree Fahrenheit, the 

membership values are 0.4, 0.6, 0.8, and 0.9. Similarly, for the fuzzy set F, for which the fan 

should run fast, the fuzzy set is for 1000 rpm, the membership is 0.3, for 2000 rpm, the 

membership is 0.5, for 3000 rpm, the membership 0.7, and for 4000 rpm, the membership is 

0.9. 

Given H dash, which is moderately hot, to be for 70… moderately hot means it is a little more 

hot. So, same temperature obviously and their corresponding membership values will reduce, 

because if I am describing moderately hot, they will have the same temperature but the 

membership values will be less. You can easily see here that for 70, instead of 0.4, now it is 

0.2; for 80, instead of 0.6, it is 0.4; for 90, instead of 0.8, it is 0.6; for 100, instead of 0.9, it is 

0.8. This is moderately hot. Now, the question is find F dash. 

I hope you are clear with this question. The question is very simple. We are given rule 1, we 

have defined what is the fuzzy set hot and fuzzy set fast by these two statements and in the 

second rule for moderately hot, we know the fuzzy set. We do not know what the fuzzy set is 

corresponding to moderately hot, that is, moderately fast. We do not know moderately fast. 

Find out F dash. If H, then F. If H dash, then F dash. Find out F dash. First, what do we do? 

Corresponding to rule 1, we found out what is R. This is for rule 1. We knew that the 

membership functions for H were 0.4, 0.6, 0.8, and 0.9, and for fast, the membership functions 

where 0.3, 0.5, 0.7, and 0.9. If you look at this, these are my H values, the crisp values: 70 

degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100 degree Fahrenheit. 

This is my speed: 1000 rpm, 2000 rpm, 3000 rpm, and 4000 rpm. 

Between 70 and 1000 rpm, the entry would be minimum of these two (Refer Slide Time: 

41:57), which is 0.3. Similarly, between 0.4 and 0.5, the minimum would be again 0.4 and 

then between 0.4 and 0.7, it will be 0.4, and for 0.4 and 0.9, it is 0.4. 

Similarly, we go to the next one, which is 0.6. For 0.6, 0.3 minimum 0.3, for 0.6 and 0.5, the 

minimum is 0.5, for 0.6 and 0.7, minimum is 0.6, for 0.6 and 0.9, it is 0.6. Similarly, you can 

fill all other cells here with their values: 0.3, 0.5, 0.7, 0.8, 0.3, 0.5, 0.7, and 0.9. This is my 

relation matrix associated with rule 1: if H, then F. Now, what I have to do is I have to find 



out F dash given H dash, using the fuzzy compositional rule of inference, which is 

represented like this. 
 

Fig. Relational matrix 
 

F dash is H dash compositional rule of inference with R. This is max-min composition 

operation. First, we take the min and then compute. H dash is given as 0.2, 0.4, 0.6, and 0.8. 

 
 

Fig. Multiple rules 

 

This is my H dash (moderately hot) and I have to do compositional inference between H dash 

and R. Again, I am repeating so that you understand how to compute it. You put this row 



vector along this column vector first . For each element, you find out what is the minimum. 

You see that here it is 0.2, 0.3, 0.3, and 0.3 and the maximum of that is 0.3. 

Similarly, you take again these values and put them here vertically. Here, the minimum is 0.2, 

here 0.4, here 0.5, here 0.5, and maximum is 0.5. I am sure you will see here it is 0.7, but in 

this case, you find that if you take this here, it is 0.2, here 0.4, here 0.6, here 0.8, and maximum 

is 0.8. F dash is 0.3, 0.5, 0.7, and 0.8. That is how we infer or we do approximate reasoning for 

a rule base. This is a very simple case. 

 
Multiple rule: 

There are two rules now. Rule 1 is if height is tall, then speed is high. Rule 2: if height is 

medium, then speed is moderate. This is describing a rule for a person as to how fast he can 

walk. Normally, those who are tall can walk very fast and those who are short, naturally their 

speed will be less. This is one fuzzy rule that expresses the speed of a person while walking. 

If height is tall, then speed is high and if height is medium, then speed is moderate. For this, 

the fuzzy memberships are defined as tall, high, medium, and moderate. 

Tall is 0.5, 0.8, and 1 for various feet like 5, 6, and 7. For speed is high, for 5 meter per second, 

7 meter per second, and 9 meter per second, the corresponding membership values are 0.4, 

0.7, and 0.9. For H2, which is medium height, the corresponding fuzzy membership… you 

can easily see that when I say medium in this fuzzy set, 5 has 0.6, 6 has 0.7, and 7 has 0.6. The 

moderate speed is 0.6 for 5 meter per second, 0.8 for 7 meter per second, and 0.7 for 9 meter 

per second. If this is the fuzzy set given, now the question is given H dash, which is above 

average, and the corresponding fuzzy set is 0.5, 0.9, 0.8 for three different heights, find S dash, 

the speed above normal. I hope the question is very clear to you. 
 

Fig. Relational matrix for 2 rules 



We have two rules. If height is tall, then speed is high; tall is defined and high is defined. If 

height is medium, then speed is moderate. I have already defined the fuzzy sets for both 

medium as well as moderate. They are all discrete fuzzy sets. Now, you are presented with new 

data and what is that new data? You are presented with a data called above average, which is 

0.5, 0.9, and 0.8 for three different heights for 5, 6, and 7. Then, find S dash equal to above 

normal, that is, if height is above average, then the speed should be above normal. 

 

This is the solution of this example. We have two rules. Naturally, we will have two relational 

matrices: R1 for rule 1 and R2 for rule 2. I will not go in detail of how we compute. You simply 

you go the antecedent and consequent, look at the membership function, find the minimum for 

each entry. Here, these are the heights and these are the speeds; 5, 6, 7 feet is the height and 

5, 7, and 9 meter per second are the speeds of the individuals. 

Now, you check the fuzzy sets and corresponding to each fuzzy set, find out what is the 

minimum membership function. For 5, 5, you will find the membership function is 0.4, 

minimum 0.5, 0.5, 0.4, 0.8, 0.8, 0.4, 0.8, 0.9. You can verify this. Similarly, R2 can be found 

out. Taking the minimum membership entry between these two fuzzy sets, that is, 

if I say this is H1 and S1 and this is H2 and S2. Look at these two fuzzy sets, find out what 

the minimum entries are for each relation and then, how do we compute S dash above normal? 

We have now two relational matrices. It is very simple. We do two composition operations: H 

dash composition with R1 (this one) and again, H dash composition R2 and then, we take the 

maximum of that, maximum of these two. 

 
Fig. Multiple rule with continuous fuzzy sets 

 

You can easily see that the maximum of H dash composition R1, H dash composition R2. You 

can easily see that because H dash is common, this particular expression is the same as H dash 

composition max of R1 and R2. This is R1 and R2. We look at all those entries wherever it is 

the maximum: for 0.4 and 0.6, the maximum is 0.6; for 0.5 and 0.6, the maximum is 0.6; for 

0.5 and 0.6, the maximum is 0.6. You see the last element here 0.9 here and 0.6, so this is 0.9. 

Like that, for all entries of R1 and R2, whatever the maximum values, you put these values 

here (that is called maximum R1 and R2) and take a composition with H dash. So H dash 

composition max of R1 and R2. H dash is already given as 0.5, 0.9, and 0.8. If you do this 

composition, you get 0.6, 0.8, and 0.8. I hope this clears your concept of how 



we compute or we do approximate reasoning in a rule base. Similarly, if there are multiple 

rules, we have no problem and we can go ahead with the same principle. 

 

The last section is the multiple rules with continuous fuzzy sets. We talked about discrete fuzzy 

set, but if it is continuous fuzzy sets, how do we deal with that? Normally, a continuous fuzzy 

system with two non-interactive inputs x1 and x2, which are antecedents, and a single output 

y, the consequent, is described by a collection of r linguistic IF-THEN rules Where the rule 

looks like this: If x1 is A1 k and x2 is A2 k, then y k is B k, where k is 1, 2 up to r. This is the 

k th rule. Similarly, we can have rule 1, rule 2, rule 3, up to rule r. In this particular rule, 

A1 k and A2 k are the fuzzy sets representing the k th antecedent pairs and B k are the fuzzy 

sets representing the k th consequent. In the following presentation, what we will do now is we 

will take a two-input system and two-rule system just to illustrate how we infer from a rule 

base where the fuzzy sets are continuous. The inputs to the system are crisp values and we use 

a max-min inference method. 

 
Fig. Viewing multiple rules 

 

We have two rules here represented graphically. You can see there are two variables x1 and 

x2. There are two fuzzy variables and for each rule, we have a consequent y. The first rule says 

that if x1 is A1 1 and x2 is A2 1, then y is B1. 

Similarly, if x1 is A1 2, x2 is A2 2, then y is B2. Now, how do we infer? Given a crisp input, 

a new input is given, crisp input in the domain of x1 and another crisp input in the domain of 

x2. There can be a system whose two variables can be temperature as well as pressure. You 

can easily think x1 to be the temperature and x2 to be the pressure. For example, for a particular 

given system, you found out the temperature to be 50 degrees centigrade and pressure to be 

some value. Given these two quantities, crisp quantities, how do we infer what should be y? 

The crisp input is given – temperature. Now, you find out corresponding membership values 

here. Corresponding to this crisp input, we get the membership value in rule 1 as µA1 1 and 

for the same crisp input, this rule 2 will provide you muA1 2. Now, in the second fuzzy variable, 

given crisp input, rule 1 will compute µA2 1 and for the second one, the second rule, the same 

crisp input would give this one, which is muA2 2. Once we find out these 



membership values, what do we do? We graphically see which is minimum between µA1 1 

and µA2 1. The minimum is µA2 1. We take that and we shade these areas in consequence. 

Now, we take the second rule. We find between µA1 2 and µA2 2, the minimum is µA1 2. We 

take that minimum and shade the area and consequent part of this rule 2. Now graphically, we 

add these two taking the maximum. First, min and then max. You can easily see that when I 

overlap this figure over this figure, I get this particular figure. You overlap this second figure 

on the first figure or first figure on the second figure and take the resultant shaded area. After 

taking this resultant shaded area…. Once you find this shaded area, the next part is to see what 

is y given a crisp value. There are many methods, but we will focus in this class or in this course 

on only one method, that is, center of gravity method(COG). 

Obviously, if I take this figure and find out what is the center of gravity, it is this value y star. 

The crisp output can be obtained using various methods. One of the most common method is 

the center of gravity method. The resulting crisp output is denoted as y star in the figure. This 

is y star. What we learnt in this is given a crisp input 1 and crisp input 2 and given two fuzzy 

rules, how do we infer correspondingly a crisp output? Our data is crisp, but we are doing fuzzy 

computation. Hence, rules are fuzzy. We take this data to the fuzzy rule base and then fuzzify 

them through fuzzification process. Graphically, we find what is the net shaded area using the 

max principle. We found out the shaded area for each rule in consequent taking the min 

principle. Taking the max principle, we found out the resultant area and then, y star is the center 

of gravity of these areas. 
 

LECTURE-8 

 

Fuzzy Control system or Fuzzy Inference System: 
 

 
 

 
Categories: 

1. Mamdani type and 

2. Takagi–Sugeno type (T-S or TSK for short form T. Takagi, M. Sugeno, and K. T. 

Kang). 

Mamdani type fuzzy systems: 



These employ fuzzy sets in the consequent part of the rules. This is a Mamdani type fuzzy logic 

controller. What they do is that the consequent part itself takes the control action; the 

incremental control action is described in the consequent part of each rule. 

 

Fig. Architecture of FLC 

The actual data that the controller is receiving is crisp data or classical data that has a definite 
value. That crisp data goes to the fuzzy logic controller and it has these four components that 
you can see: fuzzifier, rule base, inference engine and defuzzifier. 

 

Fuzzifier. In a fuzzy logic controller, the computation is through linguistic values, not through 

exact computation. Naturally, the fuzzifier would fuzzify the crisp data. In case of temperature, 

I can say it is hot, medium-hot, cold, medium-cold, very hot and normal. These are the fuzzifier. 

That means given a crisp data or the value of temperature say 40 degrees, then I have to now 

convert to various linguistic values and each linguistic value will be associated with a specific 

membership function. That is fuzzifier. 
 

Once the data has been fuzzified, then it goes to the rule base and using an inference 
mechanism…. The inference is taking place in fuzzy term, not in classical term and after a 
fuzzy inference takes place about the decision or about the control action, we place a 
defuzzifier. What this defuzzifier does is it converts the fuzzy control action to a crisp control 
action. 

 

In general, what we can say is the principal design parameters of a fuzzy logic controller are 

the following: fuzzification strategies and interpretation of a fuzzification operator. How do we 

fuzzify a crisp data? In the database, the discretization or normalization of universe of discourse 

is done, because we must know the range of data one will encounter in an actual plant. 

Accordingly, the normalization must be done so that we are taking into account all possible 

values of data that one may encounter in a physical plant. 
 

Fuzzy partition of the input and output spaces: 

If I know the dynamic range of an input to the controller and the input to the plant (input to 



 

Fig. Parameters to be designed in FLC 

the plant is actually output to the controller)… if I know the dynamic range, then in that 

dynamic range, I must learn how to do fuzzy partition of the input and output space and this 

fuzzification suits such the process should be complete in the sense.… You see that I am 
drawing a universe of discourse here. This is the real value for a specific variable x . If I have 

1 

defined a fuzzy set like this and like this, you can easily see that this part of the data is not 
associated with any fuzzy membership. This is µ and this is x 

1 

not associated with any membership. 

and unfortunately, this part is 

 

This fuzzification process is not complete. That means the entire universe of discourse in a 

specific domain, wherever there are control systems…. There are various kinds of control 

systems: process control, robot control, and aircraft control. Every control system is associated 

with some input data and some output data. All possible input data and all possible output data 

should be associated with a specific linguistic value as well as a membership function. 
 

Rule base: 

Once fuzzification is done, how do we create a rule base? As I said, typically, in the rule base, 

the two variables that are most important are error and change in error and we also showed why 

it is so. Rule base. Choice of process state input variables and control variables. You know that 

if I am implementing a fuzzy state feedback controller, then, a fuzzy state feedback controller 

u would be minus K x. So, x is the states of the system, whereas if I am implementing a fuzzy 

PID controller, then it will be u old plus K delta u k. Here, this delta u k is a function of error 

and change in 

error, whereas, in a state feedback controller, this is a common signal r and so, the control 

action is dependent on state x1, x2, and xn. 

Source and derivation of fuzzy control rules. 

How do I derive these rules? What is the basis? Types of fuzzy control rules. A type of fuzzy 

control rule means whether it is a PID controller, fuzzy PID controller or it is a fuzzy state 

feedback controller. Similarly, completeness of fuzzy control rules means given any crisp 

data in the domain of input space as well as output space, do I have in my rule base a specific 

rule associated with this data? If I do not have any rule for this data, then the FLC will fail. 

That is meaning of completeness of fuzzy control rules. 



Fuzzy inference mechanism: 

We have already talked about what is fuzzy inference mechanism. Given multiple rules, how 
do we infer the consequence part? Defuzzification strategies and the interpretation of 
fuzzification operator. Once the fuzzy inference is done, from the fuzzy inference, how do I 
get a crisp value or a crisp control action? This is called defuzzification. 

This is how we fuzzify a crisp data to fuzzy data or we make them fuzzy, that is, the crisp 
input for variable x and x …. Actually, this is not x and x but e and delta e are converted to 

fuzzy sets using tr1iangul2ar membership functions.1 It is 2not always triangular, it can be 
anything, but normally in control literature, most of these membership functions are triangular 
functions. 

 

Fig. Defuzzification 

Defuzzification. Once I know how to do the fuzzification, defuzzification is explained in the 

following diagram. You see that among various defuzzification methods, the most popular is 

center of gravity method. How do I do it? Crisp input is given at any situation, any k th sampling 

instant and the fuzzy logic controller gets the command signal, gets the actual output of the 

plant, computes the error, computes the change in error and then, those crisp values are fed into 

the fuzzification layer. Then, you have the membership function. You pass on those fuzzy data 

to the rule base and then, for a specific rule base… You see that in rule 1, 
you see that if you compare the membership µ A 

1 
1 and µ A 

2 
1, µ A 

2 
1 is the minimum and 

correspondingly, you shade the zone of action. This is delta u. How much should be the 

incremental control action? This is my shaded portion or shaded portion of my control action. 



Now I take a second one, second rule and there again, I evaluate the fuzzy membership 
function A 

1 
2 and A 

2 
2. You see that the membership function in A 

1 
2 is less. Corresponding 

to that, we shade the incremental control action. Now, you see that if I take the maximum of 

these two shaded zones, I get this (Refer Slide Time: 38:03), maximum of this. After I get, this 

is the fuzzy decision, this is the fuzzy incremental control action, but how do I convert this 

fuzzy incremental control action to a crisp action? That is by the center of gravity method. In 

the center of gravity method, I integrate µ delta u d delta u upon integration of µ d delta u. If 

I integrate this function, I get somewhere here to be the center of gravity. delta µ star is this 

value, which is graphically shown here. We discussed about Mamdani type fuzzy logic 

controller. 
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Takagi–Sugeno fuzzy systems: 

The number of rules required by the Mamdani model are reduced here. They employ function 

of the input fuzzy linguistic variable as the consequent of the rules. What happens here is 

that a fuzzy dynamic model is expressed in the form of local rules. Local rule means if there 

are two variables x1 = a and x2 = b, then the plant dynamics can be represented either as a 

linear dynamical system or a nonlinear dynamical system, as a known dynamical system. 

TSK Fuzzy Rule 

• If x is A and y is B then z = f(x,y) 

– Where A and B are fuzzy sets in the 

antecedent, and 

– Z = f(x,y) is a crisp function in the 

consequence. 

• Usually f(x,y) is a polynomial in the input variables 

x and y, but it can be any function describe the 

output of the model within the fuzzy region 

specified by the antecedence of the rule. 

First order TSK Fuzzy Model 

• f(x,y) is a first order polynomial 

Example: a two-input one-output TSK 

IF x is Aj and y is Bk then zi= px+qy+r 

The degree the input matches ith rule is typically computed using min 

operator: wi = min(µAj(x), µBk(y)) 

• Each rule has a crisp output 

• Overall output is obtained via weighted average (reduce computation time of 

defuzzification required in a Mamdani model) 

z = i 
wizi/  i     

wi 

To further reduce computation, weighted sum may be used, I.e. 

z =  i 
wizi 

Example #1: Single-input 

• A single-input TSK fuzzy model can be expressed as 

– If X is small then Y = 0.1 X +6.4. 

– If X is medium then Y = -0.5X +4. 

– If X is large then Y = X-2. 



 

 
 

 

Fig. Rules in first order TSK fuzzy model 

 

Example #2 : Two-input 

• A two-input TSK fuzzy model with 4 rules can be expressed as 

– If X is small and Y is small then Z = -X +Y +1. 

– If X is small and Y is large then Z = -Y +3. 

– If X is large and Y is small then Z = -X+3. 

– If X is large and Y is large then Z = X+Y+2. 

Zero-order TSK Fuzzy Model 

• When f is constant, we have a zero-order TSK fuzzy model (a special case of the 

Mamdani fuzzy inference system which each rule‟s consequent is specified by a fuzzy 

singleton or a pre defuzzified consequent) 

• Minimum computation time Overall output via either weighted 

average or weighted sum is always crisp 

• Without the time-consuming defuzzification operation, the TSK (Sugeno) fuzzy model is by 

far the most popular candidate for sample data-based fuzzy modeling. 

A general Takagi–Sugeno model of N rules for any physical plant, a general T–S model of N 

rules is given by Rule . This is the i th rule. If x k is a specific fuzzy set M i and x k is 
i 1 1 2 

another specific fuzzy set M i and so on until x k is another fuzzy set M i, then the system 
2 n n 

dynamics locally is described as x k plus 1 is A x k plus B u k, where i equal to 1, 2 until N, 
i i 

because there are N rules. 

Advantages over Mamdani model: 

1. Less computation 

2. Less time consuming 

3. Simple 
4. Mostly used for sample data based fuzzy modelling 



Tsukamoto Fuzzy Models: 

• The consequent of each fuzzy if-then rule is represented by a fuzzy set with monotonical 

MF 

– As a result, the inferred output of each rule is defined as a crisp value induced by the 

rules‟ firing strength. 

• The overall output is taken as the weighted average of each rule‟s output. 

 
Example: Single-input Tsukamoto fuzzy model 

• A single-input Tsukamoto fuzzy model can be expresses as 

– If X is small then Y is C1 
– If X is medium then Y is C2 
– If X is large then Y is C3 

Example: Single-input Tsukamoto fuzzy model 
 

Fig. Output of Tsukamoto fuzzy model 

Input Space Partitioning: 

The antecedent of a fuzzy rule defines a local fuzzy region, while the consequent describes the 
behavior with in the region via various constituents. The consequent constituents are 
different MF or equation or constant depending on the fuzzy model. But, antecedents of 
fuzzy rules can be formed by partitioning the input space. 

3 types- 



Grid partition: Often chosen method. Applicable to small no. of input variables and MFs i.e. 
curse of dimensionality . 

Tree partition: Each region is specified uniquely along a corresponding decision tree. 
Exponenential increase of no. of rules is reduced. More MFs are needed. Orthogonality 
holds roughly. Used in CART algorithm. 

Scatter partition: 

Portioning is scattered. Orthogonality doesn‟t hold. The portioned regions are non uniform.No. 
of rules is reduced, but overall mapping from consequent of each rule out put is difficult to 
estimate. 

 

Fig. (a) Grid partition (b) Tree partition (c) Scatter partition 

If certain transformation of the input is done, more flexible boundaries and partition will be 
obtained. 
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Defuzzification methods in detail: 



 



 



 



 



 



 



 





 


